Torsion units in integral group rings of Janko simple groups

نویسندگان

  • V. A. Bovdi
  • Eric Jespers
  • Alexander Konovalov
چکیده

Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko simple groups. As a consequence, for the Janko groups J1, J2 and J3 we confirm Kimmerle’s conjecture on prime graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsion Units in Integral Group Rings of Conway Simple Groups

Using the Luthar–Passi method, we investigate the possible orders and partial augmentations of torsion units of the normalized unit group of integral group rings of Conway simple groups Co1, Co2 and Co3. Let U(ZG) be the unit group of the integral group ring ZG of a finite group G, and V (ZG) be its normalized unit group

متن کامل

Torsion Units in Integral Group Ring of Higman-sims Simple Group

Let V (ZG) be the normalized unit group of the integral group ring ZG of a finite group G. One of most interesting conjectures in the theory of integral group ring is the conjecture (ZC) of H. Zassenhaus [25], saying that every torsion unit u ∈ V (ZG) is conjugate to an element in G within the rational group algebra QG. For finite simple groups, the main tool of the investigation of the Zassenh...

متن کامل

Some Results on Hypercentral Units in Integral Group Rings

In this note we investigate the hypercentral units in integral group rings ZG, where G is not necessarily torsion. One of the main results obtained is the following (Theorem 3.5): if the set of torsion elements of G is a subgroup T of G and if Z2(U) is not contained in CU (T ), then T is either an Abelian group of exponent 4 or a Q∗ group. This extends our earlier result on torsion group rings.

متن کامل

On the Torsion Units of Some Integral Group Rings∗

It is shown that any torsion unit of the integral group ring ZG of a finite group G is rationally conjugate to a trivial unit if G = P o A with P a normal Sylow p-subgroup of G and A an abelian p′-group (thus confirming a conjecture of Zassenhaus for this particular class of groups). The proof is an application of a fundamental result of Weiss. It is also shown that the Zassenhaus conjecture ho...

متن کامل

Zassenhaus Conjecture for A6

For the alternating group A6 of degree 6, Zassenhaus’ conjecture about rational conjugacy of torsion units in integral group rings is confirmed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2011